Part Number Hot Search : 
4304502 LJ32H028 SMCJ36A R2010 4304502 BZX84 STF7NM80 74HC4053
Product Description
Full Text Search
 

To Download TS482 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/24 n operating from vcc=2v to 5.5v n 100mw into 16 w at 5v n 38mw into 16 w at 3.3v n 11.5mw into 16 w at 2v n switch on/off click reduction circuitry n high power supply rejection ratio: 85db at 5v n high signal-to-noise ratio: 110db(a) at 5v n high crosstalk immunity: 100db (f=1khz) n rail to rail input and output n unity-gain stable n available in so8, miniso8 & dfn8 description the TS482 is a dual audio power amplifier able to drive a 16 or 32 w stereo headset down to low volt- ages. its delivering up to 100mw per channel (into 16 w loads) of continuous average power with 0.1% thd+n from a 5v power supply. the unity gain stable TS482 can be configured by external gain-setting resistors. applications n stereo headphone amplifier n optical storage n computer motherboard n pda, organizers & notebook computers n high end tv, set top box, dvd players n sound cards order code miniso & dfn only available in tape & reel with t suffix, so is available in tube (d) and in tape & reel (dt)) pin connections (top view) part number temperature range package marking dsq TS482id/dt -40, +85c 482i TS482ist TS482iqt typical application schematic TS482ist - miniso8 TS482id, TS482idt - so8 5 o ut (1) 6 7 8 4 3 2 1 v in+ (1) g nd v cc o ut (2) v in- (2) v in+ (2) v in- (1) 5 o ut (1) 6 7 8 4 3 2 1 v in+ (1) g nd v cc o ut (2) v in- (2) v in+ (2) v in- (1) + - + - 8 4 1 7 2 3 5 6 TS482 3.9k 3.9k 3.9k 3.9k 100k 100k vcc vcc + 220f + 220f right in left in + rl=32ohms + rl=32ohms + 1f + 2.2f + 2.2f + cs 1f cin1 cin2 rin1 cout2 cout1 rin2 rfeed1 rfeed2 cb rpol rpol + - + - 8 4 1 7 2 3 5 6 TS482 3.9k 3.9k 3.9k 3.9k 100k 100k vcc vcc + 220f + 220f right in left in + rl=32ohms + rl=32ohms + 1f + 2.2f + 2.2f + cs 1f cin1 cin2 rin1 cout2 cout1 rin2 rfeed1 rfeed2 cb rpol rpol TS482iqt - dfn8 1 2 3 4 5 8 7 6 v in + (1) gnd v in + (2) vcc out (2) out (1) v in - (2) v in - (1) 1 2 3 4 5 8 7 6 v in + (1) gnd v in + (2) vcc out (2) out (1) v in - (2) v in - (1) 100mw stereo headphone amplifier june 2003 TS482
TS482 2/24 absolute maximum ratings operating conditions symbol parameter value unit v cc supply voltage 1) 6v v i input voltage -0.3 to v cc + 0.3 v t oper operating free air temperature range -40 to + 85 c t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thja thermal resistance junction to ambient so8 miniso8 dfn8 175 215 70 c/w pd power dissipation 2) so8 miniso8 dfn8 0.71 0.58 1.79 w esd human body model (pin to pin) 2 kv esd machine model - 220pf - 240pf (pin to pin) 200 v latch-up latch-up immunity (all pins) 200 ma lead temperature (soldering, 10sec) 250 c output short-circuit duration see note 3) 1. all voltages values are measured with respect to the ground pin. 2. pd has been calculated with tamb = 25c, tjunction = 150c. 3. attention must be paid to continuous power dissipation. exposure of the ic to a short circuit on one or two amplifiers simult aneously can cause exces- sive heating and the destruction of the device. symbol parameter value unit v cc supply voltage 2 to 5.5 v r l load resistor >= 16 w c l load capacitor r l = 16 to 100 w r l > 100 w 400 100 pf v icm common mode input voltage range g nd to v cc v r thja thermal resistance junction to ambient so8 miniso8 dfn8 1) 150 190 41 c/w 1. when mounted on a 4-layer pcb. components functional description rin inverting input resistor which sets the closed loop gain in conjunction with rfeed. this resistor also forms a high pass filter with cin (fc = 1 / (2 x pi x rin x cin)) cin input coupling capacitor which blocks the dc voltage at the amplifier input terminal rfeed feed back resistor which sets the closed loop gain in conjunction with rin cs supply bypass capacitor which provides power supply filtering cb bypass capacitor which provides half supply filtering cout output coupling capacitor which blocks the dc voltage at the load input terminal this capacitor also forms a high pass filter with rl (fc = 1 / (2 x pi x rl x cout)) rpol these 2 resistors form a voltage divider which provide a dc biasing voltage (vcc/2) for the 2 amplifiers. av closed loop gain = -rfeed / rin
TS482 3/24 electrical characteristics v cc = +5v , gnd = 0v , t amb = 25c (unless otherwise specified) symbol parameter min. typ. max. unit i cc supply current no input signal, no load 5.5 7.2 ma v io input offset voltage (v icm = v cc /2) 15mv i ib input bias current (v icm = v cc /2) 200 500 na p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w 60 95 65 67.5 100 107 mw thd + n total harmonic distortion + noise (a v =-1) 1) r l = 32 w, p out = 60mw, 20hz f 20khz r l = 16 w, p out = 90mw, 20hz f 20khz 1. fig. 68 to 79 show dispersion of these parameters. 0.03 0.03 % psrr power supply rejection ratio (a v =1), inputs floating f = 100hz , vripple = 100mvpp 85 db i o max output current thd +n < 1%, r l = 16 w connected between out and v cc /2 106 120 ma v o output swing v ol : r l = 32 w v oh : r l = 32 w v ol : r l = 16 w v oh : r l = 16 w 4.45 4.2 0.4 4.6 0.55 4.4 0.48 0.65 v snr signal-to-noise ratio (filter type a, a v =-1) (r l = 32 w, thd +n < 0.2%, 20hz f 20khz) 95 110 db crosstalk channel separation, r l = 32 w f = 1khz f = 20hz to 20khz channel separation, r l = 16 w f = 1khz f = 20hz to 20khz 100 80 100 80 db c i input capacitance 1 pf gbp gain bandwidth product (r l = 32 w) 1.35 2.2 mhz sr slew rate, unity gain inverting (r l = 16 w) 0.45 0.7 v/s
TS482 4/24 electrical characteristics v cc = +3.3v , gnd = 0v , t amb = 25c (unless otherwise specified) 2) 2. all electrical values are guaranted with correlation measurements at 2v and 5v symbol parameter min. typ. max. unit i cc supply current no input signal, no load 5.3 7.2 ma v io input offset voltage (v icm = v cc /2) 15mv i ib input bias current (v icm = v cc /2) 200 500 na p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w 23 36 27 28 38 42 mw thd + n total harmonic distortion + noise (a v =-1) 1) r l = 32 w, p out = 16mw, 20hz f 20khz r l = 16 w, p out = 35mw, 20hz f 20khz 1. fig. 68 to 79 show dispersion of these parameters. 0.03 0.03 % psrr power supply rejection ratio (a v =1), inputs floating f = 100hz , vripple = 100mvpp 80 db i o max output current thd +n < 1%, r l = 16 w connected between out and v cc /2 64 75 ma v o output swing v ol : r l = 32 w v oh : r l = 32 w v ol : r l = 16 w v oh : r l = 16 w 2.85 2.68 0.3 3 0.45 2.85 0.38 0.52 v snr signal-to-noise ratio (filter type a, a v =-1) (r l = 32 w, thd +n < 0.2%, 20hz f 20khz) 92 107 db crosstalk channel separation, r l = 32 w f = 1khz f = 20hz to 20khz channel separation, r l = 16 w f = 1khz f = 20hz to 20khz 100 80 100 80 db c i input capacitance 1 pf gbp gain bandwith product (r l = 32 w) 1.2 2 mhz sr slew rate, unity gain inverting (r l = 16 w) 0.45 0.7 v/s
TS482 5/24 electrical characteristics v cc = +2.5v , gnd = 0v , t amb = 25c (unless otherwise specified) 2) 2. all electrical values are guaranted with correlation measurements at 2v and 5v symbol parameter min. typ. max. unit i cc supply current no input signal, no load 5.1 7.2 ma v io input offset voltage (v icm = v cc /2) 15mv i ib input bias current (v icm = v cc /2) 200 500 na p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w 12.5 17.5 13.5 14.5 20.5 22 mw thd + n total harmonic distortion + noise (a v =-1) 1) r l = 32 w, p out = 10mw, 20hz f 20khz r l = 16 w, p out = 16mw, 20hz f 20khz 1. fig. 68 to 79 show dispersion of these parameters. 0.03 0.03 % psrr power supply rejection ratio (a v =1), inputs floating f = 100hz , vripple = 100mvpp 75 db i o max output current thd +n < 1%, r l = 16 w connected between out and v cc /2 45 56 ma v o output swing v ol : r l = 32 w v oh : r l = 32 w v ol : r l = 16 w v oh : r l = 16 w 2.14 1.97 0.25 2.25 0.35 2.15 0.325 0.45 v snr signal-to-noise ratio (filter type a, a v =-1) (r l = 32 w, thd +n < 0.2%, 20hz f 20khz) 89 102 db crosstalk channel separation, r l = 32 w f = 1khz f = 20hz to 20khz channel separation, r l = 16 w f = 1khz f = 20hz to 20khz 100 80 100 80 db c i input capacitance 1 pf gbp gain bandwidth product (r l = 32 w) 1.2 2 mhz sr slew rate, unity gain inverting (r l = 16 w) 0.45 0.7 v/s
TS482 6/24 electrical characteristics v cc = +2v , gnd = 0v , t amb = 25c (unless otherwise specified) symbol parameter min. typ. max. unit i cc supply current no input signal, no load 5 7.2 ma v io input offset voltage (v icm = v cc /2) 15mv i ib input bias current (v icm = v cc /2) 200 500 na p o output power thd+n = 0.1% max, f = 1khz, r l = 32 w thd+n = 1% max, f = 1khz, r l = 32 w thd+n = 0.1% max, f = 1khz, r l = 16 w thd+n = 1% max, f = 1khz, r l = 16 w 7 9.5 8 9 11.5 13 mw thd + n total harmonic distortion + noise (a v =-1) 1) r l = 32 w, p out = 6.5mw, 20hz f 20khz r l = 16 w, p out = 8mw, 20hz f 20khz 1. fig. 68 to 79 show dispersion of these parameters. 0.02 0.025 % psrr power supply rejection ratio (a v =1), inputs floating f = 100hz , vripple = 100mvpp 75 db i o max output current thd +n < 1%, r l = 16 w connected between out and v cc /2 33 41.5 ma v o output swing v ol : r l = 32 w v oh : r l = 32 w v ol : r l = 16 w v oh : r l = 16 w 1.67 1.53 0.24 1.73 0.33 1.63 0.295 0.41 v snr signal-to-noise ratio (filter type a, a v =-1) (r l = 32 w, thd +n < 0.2%, 20hz f 20khz) 88 101 db crosstalk channel separation, r l = 32 w f = 1khz f = 20hz to 20khz channel separation, r l = 16 w f = 1khz f = 20hz to 20khz 100 80 100 80 db c i input capacitance 1 pf gbp gain bandwith product (r l = 32 w) 1.2 2 mhz sr slew rate, unity gain inverting (r l = 16 w) 0.42 0.65 v/s
TS482 7/24 index of graphs description figure page open loop gain 1 to 10 8, 9 phase and gain margin vs power supply voltage 11 to 20 9 to 11 output power vs power supply voltage 21 to 23 11 output power vs load resistance 23 to 27 11, 12 power dissipation vs output power 28 to 31 12, 13 power derating curves 32 13 current consumption vs power supply voltage 33 13 psrr vs frequency 34 13 thd + n vs output power 35 to 49 13 to 16 thd + n vs frequency 50 to 54 16 signal to noise ratio vs power supply voltage 55 to 58 17 equivalent input noise voltage vs frequency 59 17 output voltage swing vs supply voltage 60 17 crosstalk vs frequency 61 to 65 18 lower cut off frequency curves 66, 67 18, 19 statistical results on thd+n 68 to 79 19 to 21
TS482 8/24 fig. 1 : open loop gain and phase vs frequency fig. 3 : open loop gain and phase vs frequency fig. 5 : open loop gain and phase vs frequency fig. 2 : open loop gain and phase vs frequency fig. 4 : open loop gain and phase vs frequency fig. 6 : open loop gain and phase vs frequency 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v rl = 8 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v rl = 16 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v rl = 32 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v rl = 8 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v rl = 16 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v rl = 32 w tamb = 25 c gain phase phase (deg)
TS482 9/24 fig. 7 : open loop gain and phase vs frequency fig. 9 : open loop gain and phase vs frequency fig. 11 : phase margin vs power supply voltage fig. 8 : open loop gain and phase vs frequency fig. 10 : open loop gain and phase vs frequency fig. 12 : gain margin vs power supply voltage 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v rl = 600 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 5v rl = 5k w tamb = 25 c gain phase phase (deg) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 30 40 50 cl= 0 to 500pf rl=8 w tamb=25 c phase margin (deg) power supply voltage (v) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v rl = 600 w tamb = 25 c gain phase phase (deg) 0.1 1 10 100 1000 10000 -40 -20 0 20 40 60 80 -20 0 20 40 60 80 100 120 140 160 180 gain (db) frequency (khz) vcc = 2v rl = 5k w tamb = 25 c gain phase phase (deg) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 30 40 50 cl=0 to 500pf rl=8 w tamb=25 c gain margin (db) power supply voltage (v)
TS482 10/24 fig. 13 : phase margin vs power supply voltage fig. 15 : phase margin vs power supply voltage fig. 17 : phase margin vs power supply voltage fig. 14 : gain margin vs power supply voltage fig. 16 : gain margin vs power supply voltage fig. 18 : gain margin vs power supply voltage 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 30 40 50 cl= 0 to 500pf rl=16 w tamb=25 c phase margin (deg) power supply voltage (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 30 40 50 cl= 0 to 500pf rl=32 w tamb=25 c phase margin (deg) power supply voltage (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 30 40 50 60 70 cl=500pf cl=0pf rl=600 w tamb=25 c phase margin (deg) power supply voltage (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 30 40 50 cl=0 to 500pf rl=16 w tamb=25 c gain margin (db) power supply voltage (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 30 40 50 cl=0 to 500pf rl=32 w tamb=25 c gain margin (db) power supply voltage (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 cl=500pf cl=200pf cl=100pf cl=0pf rl=600 w tamb=25 c gain margin (db) power supply voltage (v)
TS482 11/24 fig. 19 : phase margin vs power supply voltage fig. 21 : output power vs power supply voltage fig. 23 :output power vs power supply voltage fig. 20 : gain margin vs power supply voltage fig. 22 : output power vs power supply voltage fig. 24 : output power vs load resistance 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 30 40 50 60 70 cl=300pf cl=500pf cl=0pf rl=5k w tamb=25 c phase margin (deg) power supply voltage (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 25 50 75 100 125 150 175 200 225 250 thd+n=10% thd+n=0.1% av = -1 rl = 8 w f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) vcc (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 25 50 75 100 thd+n=10% thd+n=0.1% av = -1 rl = 32 w f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) vcc (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 10 20 cl=500pf cl=200pf cl=100pf cl=0pf rl=5k w tamb=25 c gain margin (db) power supply voltage (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 25 50 75 100 125 150 175 200 thd+n=10% thd+n=0.1% av = -1 rl = 16 w f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) vcc (v) 8 16243240485664 0 20 40 60 80 100 120 140 160 180 200 thd+n=10% thd+n=0.1% av = -1 vcc = 5v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance ( )
TS482 12/24 fig. 25 : output power vs load resistance fig. 27 : output power vs load resistance fig. 29 : power dissipation vs output power fig. 26 : output power vs load resistance fig. 28 : power dissipation vs output power fig. 30 : power dissipation vs output power 8 16243240485664 0 10 20 30 40 50 60 70 thd+n=10% thd+n=0.1% av = -1 vcc = 3.3v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance (ohm) 8 16243240485664 0 5 10 15 20 25 thd+n=10% thd+n=0.1% av = -1 vcc = 2v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance (ohm) 0 102030405060 0 10 20 30 40 50 60 70 vcc=3.3v f=1khz thd+n<1% rl=8 w rl=16 w rl=32 w power dissipation (mw) output power (mw) 8 16243240485664 0 5 10 15 20 25 30 35 40 45 50 thd+n=10% thd+n=0.1% av = -1 vcc = 2.6v f = 1khz bw < 125khz tamb = 25 c thd+n=1% output power (mw) load resistance (ohm) 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160 vcc=5v f=1khz thd+n<1% rl=32 w rl=16 w rl=8 w power dissipation (mw) output power (mw) 0 5 10 15 20 25 30 0 10 20 30 40 vcc=2.6v f=1khz thd+n<1% rl=16 w rl=8 w rl=32 w power dissipation (mw) output power (mw)
TS482 13/24 fig. 31 : power dissipation vs output power fig. 33 : current consumption vs power supply voltage fig. 35 : thd + n vs output power fig. 32 : power derating vs ambiant temperature fig. 34 : power supply rejection ration vs frequency fig. 36 : thd + n vs output power 02468101214 0 5 10 15 20 25 rl=16 w rl=8 w rl=32 w vcc=2v f=1khz thd+n<1% power dissipation (mw) output power (mw) 012345 0 1 2 3 4 5 6 ta=-40 c ta=85 c ta=25 c no load current consumption (ma) power supply voltage (v) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 8 w f = 20hz av = -1 bw < 125khz tamb = 25 c thd + n (%) output power (mw) 100 1000 10000 100000 0 20 40 60 80 100 20 vcc=2.6v & 2v vcc=3.3v vcc=5v vripple=100mvpp vpin3,5=vcc/2 (forced bias) rl >= 8 w 0db=70mvrms tamb=25 c psrr (db) frequency (hz) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 16 w f = 20hz av = -1 bw < 125khz tamb = 25 c thd + n (%) output power (mw)
TS482 14/24 fig. 37 : thd + n vs output power fig. 39 : thd + n vs output power fig. 41 : thd + n vs output power fig. 38 : thd + n vs output power fig. 40 : thd + n vs output power fig. 42 : thd + n vs output power 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 32 w f = 20hz av = -1 bw < 125khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 5k w f = 20hz av = -1 bw < 125khz tamb = 25 c thd + n (%) output voltage (vrms) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 16 w f = 1khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 600 w f = 20hz av = -1 bw < 125khz tamb = 25 c thd + n (%) output voltage (vrms) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 8 w f = 1khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 32 w f = 1khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output power (mw)
TS482 15/24 fig. 43 : thd + n vs output power fig. 45 : thd + n vs output power fig. 47 : thd + n vs output power fig. 44 : thd + n vs output power fig. 46 : thd + n vs output power fig. 48 : thd + n vs output power 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 600 w f = 1khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output voltage (vrms) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 8 w f = 20khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output power (mw) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 32 w f = 20khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 1e-3 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 5k w f = 1khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output voltage (vrms) 1 10 100 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 16 w f = 20khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output power (mw) 0.01 0.1 1 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 600 w f = 20khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output voltage (vrms)
TS482 16/24 fig. 49 : thd + n vs output power fig. 51 : thd + n vs frequency fig. 53 : thd + n vs frequency fig. 50 : thd + n vs frequency fig. 52 : thd + n vs frequency fig. 54 : thd + n vs frequency 0.01 0.1 1 0.01 0.1 1 10 vcc=5v vcc=3.3v vcc=2.6v vcc=2v rl = 5k w f = 20khz av = -1 bw < 125khz tamb = 25 c thd + n (%) output voltage (vrms) 100 1000 10000 0.01 0.1 vcc=2v, po=8mw vcc=2.6v, po=18mw vcc=5v, po=90mw vcc=3.3v, po=35mw rl=16 w av=-1 bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 1e-3 0.01 0.1 vcc=5v, vo=1.4vrms vcc=2.6v, vo=0.75vrms vcc=3.3v, vo=1vrms vcc=2v, vo=0.55vrms rl=600 w av=-1 bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 0.01 0.1 vcc=2v, po=10mw vcc=2.6v, po=20mw vcc=3.3v, po=40mw vcc=5v, po=100mw rl=8 w av=-1 bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 0.01 0.1 vcc=2v, po=6.5mw vcc=5v, po=60mw vcc=3.3v, po=16mw vcc=2.6v, po=12mw rl=32 w av=-1 bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz) 100 1000 10000 1e-3 0.01 0.1 vcc=5v, vo=1.4vrms vcc=2.6v, vo=0.75vrms vcc=3.3v, vo=1vrms vcc=2v, vo=0.55vrms rl=5k w av=-1 bw < 125khz tamb=25 c 20k 20 thd + n (%) frequency (hz)
TS482 17/24 fig. 55 : signal to noise ratio vs power supply voltage with unweighted filter (20hz to 20khz) fig. 57 : signal to noise ratio vs power supply voltage with weighted filter type a fig. 59 : equivalent input noise voltage vs frequency fig. 56 : signal to noise ratio vs power supply voltage with unweighted filter (20hz to 20khz) fig. 58 : signal to noise ratio vs power supply voltage with weighted filter type a fig. 60 : output voltage swing vs power supply voltage 2.0 2.5 3.0 3.5 4.0 4.5 5.0 90 92 94 96 98 100 102 104 106 108 110 av = -1 thd+n < 0.2% tamb = 25 c rl=32 w rl=16 w rl=8 w signal to noise ratio (db) power supply (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 90 95 100 105 110 115 120 av = -1 thd+n < 0.2% tamb = 25 c rl=32 w rl=16 w rl=8 w signal to noise ratio (db) power supply (v) 0.02 0.1 1 10 5 10 15 20 25 vcc=5v rs=100 w tamb=25 c equivalent input noise voltage (nv/ hz) frequency (khz) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 90 92 94 96 98 100 102 104 106 108 110 av = -1 thd+n < 0.2% tamb = 25 c rl=5k w rl=600 w signal to noise ratio (db) power supply (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 90 95 100 105 110 115 120 av = -1 thd+n < 0.2% tamb = 25 c rl=5k w rl=600 w signal to noise ratio (db) power supply (v) 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 rl=32 w rl=16 w rl=8 w tamb=25 c voh & vol (v) power supply voltage (v)
TS482 18/24 fig. 61 : crosstalk vs frequency fig. 63 : crosstalk vs frequency fig. 65 : crosstalk vs frequency fig. 62 : crosstalk vs frequency fig. 64 : crosstalk vs frequency fig. 66 : lower cut off frequency vs output capacitor 100 1000 10000 20 40 60 80 100 chb to cha cha to chb rl=8 w vcc=5v pout=100mw av=-1 bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 20 40 60 80 100 chb to cha & cha to chb rl=32 w vcc=5v pout=60mw av=-1 bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 100 120 chb to cha & cha to chb rl=5k w vcc=5v vout=1.5vrms av=-1 bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 20 40 60 80 100 chb to cha cha to chb rl=16 w vcc=5v pout=90mw av=-1 bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 100 1000 10000 0 20 40 60 80 100 120 chb to cha & cha to chb rl=600 w vcc=5v vout=1.4vrms av=-1 bw < 125khz tamb=25 c 20k 20 crosstalk (db) frequency (hz) 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 1 10 100 1000 rl=32 w rl=16 w rl=8 w -3db cut off frequency (hz) output capacitor cout ( f)
TS482 19/24 fig. 67 : lower cut off frequency vs input capacitor fig. 69 : best case distribution of thd+n fig. 71 : typical distribution of thd+n fig. 68 : typical distribution of thd+n fig. 70 : worst case distribution of thd+n fig. 72 : best case distribution of thd+n 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 1 10 100 1000 rin=22k w rin=10k w rin=3.9k w -3db cut off frequency (hz) input capacitor cin ( f) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 4 8 12 16 20 24 28 32 36 40 vcc=5v rl=16 w av=-1 pout=90mw 20hz f 20khz tamb=25 c number of units thd+n (%) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 4 8 12 16 20 24 28 32 36 40 vcc=2v rl=16 w av=-1 pout=8mw 20hz f 20khz tamb=25 c number of units thd+n (%) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 4 8 12 16 20 24 28 32 36 40 vcc=5v rl=16 w av=-1 pout=90mw 20hz f 20khz tamb=25 c number of units thd+n (%) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 4 8 12 16 20 24 28 32 36 40 vcc=5v rl=16 w av=-1 pout=90mw 20hz f 20khz tamb=25 c number of units thd+n (%) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 4 8 12 16 20 24 28 32 36 40 vcc=2v rl=16 w av=-1 pout=8mw 20hz f 20khz tamb=25 c number of units thd+n (%)
TS482 20/24 fig. 73 : worst case distribution of thd+n fig. 75 : best case distribution of thd+n fig. 77 : typical distribution of thd+n fig. 74 : typical distribution of thd+n fig. 76 : worst case distribution of thd+n fig. 78 : best case distribution of thd+n 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 4 8 12 16 20 24 28 32 36 40 vcc=2v rl=16 w av=-1 pout=8mw 20hz f 20khz tamb=25 c number of units thd+n (%) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 2 4 6 8 10 12 14 16 18 20 vcc=5v rl=32 w av=-1 pout=60mw 20hz f 20khz tamb=25 c number of units thd+n (%) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 4 8 12 16 20 24 28 32 36 40 vcc=2v rl=32 w av=-1 pout=6.5mw 20hz f 20khz tamb=25 c number of units thd+n (%) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 2 4 6 8 10 12 14 16 18 20 vcc=5v rl=32 w av=-1 pout=60mw 20hz f 20khz tamb=25 c number of units thd+n (%) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 2 4 6 8 10 12 14 16 18 20 vcc=5v rl=32 w av=-1 pout=60mw 20hz f 20khz tamb=25 c number of units thd+n (%) 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 4 8 12 16 20 24 28 32 36 40 vcc=2v rl=32 w av=-1 pout=6.5mw 20hz f 20khz tamb=25 c number of units thd+n (%)
TS482 21/24 fig. 79 : worst case distribution of thd+n 0.012 0.018 0.024 0.030 0.036 0.042 0.048 0 4 8 12 16 20 24 28 32 36 40 vcc=2v rl=32 w av=-1 pout=6.5mw 20hz f 20khz tamb=25 c number of units thd+n (%)
TS482 22/24 package mechanical data dim. mm. inch min. typ max. min. typ. max. a 1.35 1.75 0.053 0.069 a1 0.10 0.25 0.04 0.010 a2 1.10 1.65 0.043 0.065 b 0.33 0.51 0.013 0.020 c 0.19 0.25 0.007 0.010 d 4.80 5.00 0.189 0.197 e 3.80 4.00 0.150 0.157 e 1.27 0.050 h 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 l 0.40 1.27 0.016 0.050 k ? (max.) ddd 0.1 0.04 so-8 mechanical data 0016023/c 8
TS482 23/24 package mechanical data
TS482 24/24 package mechanical data information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result f rom its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specificati ons mentioned in this publication are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of stmicroelectronics. the st logo is a registered trademark of stmicroelectronics ? 2003 stmicroelectronics - printed in italy - all rights reserved stmicroelectronics group of companies australia - brazil - canada - china - finland - france - germany - hong kong - india - israel - italy - japan - malaysia ml m si s i s d si l duidki d uids


▲Up To Search▲   

 
Price & Availability of TS482

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X